Use of the FDA nozzle model to illustrate validation techniques in computational fluid dynamics (CFD) simulations
نویسندگان
چکیده
A "credible" computational fluid dynamics (CFD) model has the potential to provide a meaningful evaluation of safety in medical devices. One major challenge in establishing "model credibility" is to determine the required degree of similarity between the model and experimental results for the model to be considered sufficiently validated. This study proposes a "threshold-based" validation approach that provides a well-defined acceptance criteria, which is a function of how close the simulation and experimental results are to the safety threshold, for establishing the model validity. The validation criteria developed following the threshold approach is not only a function of Comparison Error, E (which is the difference between experiments and simulations) but also takes in to account the risk to patient safety because of E. The method is applicable for scenarios in which a safety threshold can be clearly defined (e.g., the viscous shear-stress threshold for hemolysis in blood contacting devices). The applicability of the new validation approach was tested on the FDA nozzle geometry. The context of use (COU) was to evaluate if the instantaneous viscous shear stress in the nozzle geometry at Reynolds numbers (Re) of 3500 and 6500 was below the commonly accepted threshold for hemolysis. The CFD results ("S") of velocity and viscous shear stress were compared with inter-laboratory experimental measurements ("D"). The uncertainties in the CFD and experimental results due to input parameter uncertainties were quantified following the ASME V&V 20 standard. The CFD models for both Re = 3500 and 6500 could not be sufficiently validated by performing a direct comparison between CFD and experimental results using the Student's t-test. However, following the threshold-based approach, a Student's t-test comparing |S-D| and |Threshold-S| showed that relative to the threshold, the CFD and experimental datasets for Re = 3500 were statistically similar and the model could be considered sufficiently validated for the COU. However, for Re = 6500, at certain locations where the shear stress is close the hemolysis threshold, the CFD model could not be considered sufficiently validated for the COU. Our analysis showed that the model could be sufficiently validated either by reducing the uncertainties in experiments, simulations, and the threshold or by increasing the sample size for the experiments and simulations. The threshold approach can be applied to all types of computational models and provides an objective way of determining model credibility and for evaluating medical devices.
منابع مشابه
Multiphase flow and tromp curve simulation of dense medium cyclones using Computational Fluid Dynamics
Dense Medium Cyclone is a high capacity device that is widely used in coal preparation. It is simple in design but the swirling turbulent flow, the presence of medium and coal with different density and size fraction and the presence of the air-core make the flow pattern in DMCs complex. In this article the flow pattern simulation of DMC is performed with computational fluid dynamics and Fluent...
متن کاملComputational fluid dynamics simulations for investigation of parameters affecting goaf gas distribution
It is necessary to obtain a fundamental understanding of the goaf gas flow patterns in longwall mine in order to develop optimum goaf gas drainage and spontaneous combustion (sponcom) management strategies. The best ventilation layout for a longwall underground mine should assist in goaf gas drainage and further reduce the risk of sponcom in the goaf. Further, in the longwall panel, regulators ...
متن کاملA CFD Simulation of the Parameters Affecting the Performance of Downhole De-oiling Hydrocyclone
Among the all parameters affecting the performance of a downhole de-oiling hydrocyclone, the investigation of internal flow field deserves more attempts especially in the petroleum industry. In this study, the effects of inlet flow rate, inlet oil volume fraction, and oil droplet diameter on the separation efficiency and pressure drop ratio have been investigated along the hydrocyclone body. Al...
متن کاملCFD Simulation of UV Disinfection Reactor for Applesauce with a Low UV Absorption Coefficient
In this study, a Computational Fluid Dynamics (CFD) model was developed to evaluate ultraviolet disinfection applesauce reactor. To simulate UV reactors, three sets of equations, including hydrodynamics, radiation and species mass conservation were solved simultaneously. The Realizable k-e turbulence model and the discrete ordinate method were used to find the UV radiation profile through the r...
متن کاملCFD Modeling of TiO2 Nano-Agglomerates Hydrodynamics in a Conical Fluidized Bed Unit with Experimental Validation
In the computational fluid dynamics (CFD) modeling of gas-solids two phase flow, the effect of boundary conditions play an important role in predicting the hydrodynamic characteristics of fluidized beds. In this work, the hydrodynamics of conical fluidized bed containing dried TiO2 nano-agglomerates were studied both experimentally and computationally. The pressure drop ...
متن کامل